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Abstract

What regularities emerge as countries develop a pattern of built settlement? This paper
uses satellite data to trace the evolution of some 50,000 built areas in Sub-Saharan Africa
between 1975 to 2014, a period in which total built area increased by a factor of 2.4 due to
growth and merger of settlements and the birth of new settlements. The median growth rate
of settlements in the smallest initial size bin was twice that of settlements in the largest (of
five) bins, rejecting Gibrat’s law. Settlements of different size generally specialise in different
activities, andwemodel this by supposing three settlement types: agricultural, agro-processing,
and manufacturing/ service based. In the presence of many dispersed agricultural settlements
the model predicts regular spacing of fewer and larger agro-processing settlements, and few
large manufacturing/ service settlements. This pattern of spacing arises as settlements of the
same type are in a competitive relationship with each other (competing for inputs and for sales
of output), while settlements of different types are in a complementary relationship (because of
input-output relationships). We confirm this empirically by grouping settlements into three size
classes and regressing each settlement’s growth on its proximity to settlements in the same and
other size classes. A fast growing neighbour of similar type reduces growth, while proximity
to fast growing settlements of a different type increases growth.
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1 Introduction

The paper studies the evolution of settlements in the 43 countries of sub-Saharan Africa from 1975
until 2014, excluding South Africa due to the role of apartheid in affecting urban geography. This
was a period of enormous change in which total built area increased by a factor of 2.4 as new
settlements developed and existing settlements grew and sometimes merged. Our empirical work
is based on satellite imaging from which we identify built areas as small as 900 sq meters. There
were about 47,500 such areas in 1975, rising to about 111,500 in 2014. We refer to these built
areas as settlements throughout the paper. The growth factor of the median 1975 settlement was
2.13 but, because of entry of small settlements, median settlement size was approximately constant
through the period.

Our principal interest is the geography of settlements and how this is shaped by patterns of
competition and complementarity between settlements of different sizes and types. In the main
section of the paper, we characterize an urban hierarchy and investigate the spatial relationships
between types of settlement, developing an analytical model which we then estimate. We find that
settlements of the same type are in competition, such that increased growth of one detracts from
the growth of neighbours of the same type. However increased growth of a settlement benefits
neighbours of other types, so settlements of different types complement each other. This is the first
evidence of these competition versus complementarity effects set in space that we know of.

We proceed in several stages. First we describe the data and some of the technical issues involved in
its analysis (Section 2). Then before turning turning to themain Sections 5 and 6, in Sections 3 and 4,
we look at sub-Saharan Africa from the point of view of the literature on urban size distributions and
growth which includes papers by Gabaix (1999), Eeckhout (2004), Harris Dobkins and Ioannides
(2001), Black and Henderson (2003), Duranton (2007), Desmet and Rappaport (2017), Bosker and
Buringh (2017), de Bellefon et al. (2020), Jedwab and Storeygard (2021), and Düben and Krause
(2021) to name a few. Different papers use different data sources, initially most using population
data, although more recently, some papers focus on the built environment and use of satellite data,
as we do. We use satellite data on built area largely because of the low quality of sub-national
population data for much of sub Saharan Africa. Our intent in the first part of the paper is to provide
a sense of the data and some basic facts about African urban growth. We show that findings for
Africa tend to differ from those found for the USA and Europe today, likely because of the low
level of economic development and rapid urbanization of the sub-continent.

In Section 3, we analyze the statistical distribution of settlements of different sizes. We review
Zipf’s law and examine log-normality of the city size distribution. In Section 4, we give an overview
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of the growth in built area between 1975 and 2014, looking both at growth of 1975 settlements and
at births during the period. There is enormous upward mobility, but growth rates of settlements
and the variance in that growth rate are lower for settlements which are relatively large initially. As
such, Gibrat’s Law is rejected. Births since 1975 dominate the 2014 number of settlements, but
births show little evidence of growth from 1975 to 1990 or 1990 to 2000. Larger 2014 settlements
were all present in 1975 and many grew both internally and by overrunning smaller neighbours,
with evidence of substantial churning.

After these descriptive results we turn to the main body of the paper. We were initially inspired by
recent papers on growth in the shadows of urban giants, such as Cuberes et al. (2021), Beltràn Tapia
et al. (2017), and Bosker and Buringh (2017). These papers explore whether smaller cities benefit
or suffer from being near larger cities, given opposing competition and market potential effects,
with Cuberes et al. (2021) arguing that which effect dominates the other changes over time in the
USA. In exploring this notion for Africa for the period 1975-2014, we concluded that something
much more fundamental was at work, that invokes notions of an urban hierarchy, as proposed in
Lösch (1954) with modeling in Fujita et al. (1999) and Tabuchi and Thisse (2011), drawing on the
new economic geography literature (Krugman, 1991).

In section 5, we develop a theoretical model of an urban hierarchy in which each settlement can
perform three possible functions. Some settlements are agricultural, using land and labour to
produce output which is costly to transport. Some are ’market/agro-processing’ towns which
use agricultural inputs and labour to produce consumption goods that have lower transport costs
than unprocessed agricultural output. The final type are manufacturing/service cities which use
labour to produce easy-to-ship final or intermediate goods. Urban labour is perfectly mobile, and
settlements can develop at any place on the geographical space. Starting from a uniform distribution
of population, a structure of settlements evolves with many small agricultural settlements, a smaller
number of larger and approximately equally spaced market/agro-processing towns; and a still
smaller number of large, and approximately equally spaced, manufacturing/ service cities. This
spatial pattern emerges as settlements of the same type are in a competitive relationship with each
other whereby a growth shock to one reduces growth in near neighbours of the same type, while
settlements of different types are in a complementary relationship whereby a growth shock in one
increases growth in a near neighbor of a different type.

We investigate these patterns of competition and complementarity in the data. In Section 6, ourmain
results are based on classifying settlements into three size classes, where the relative distribution
across the three types is country specific, using a statistical criterion. As predicted by the model,
settlements generally grow more slowly if close to neighbours in the same size class that are fast
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growing, and, grow faster if close to fast growing settlements in one of the other size classes.

2 Data

Our primary data are based on the European Union’s Global Human Settlements built cover data
set, GHS-BUILT, that defines built surface derived from Landsat 30-meter resolution satellite data
for different dates: 1975, 1990, 2000, and 2014. There is a companion data set on the spatial
distribution of population from Gridded Population of the World [GPWv4], but we work with built
cover in preference to population data for several reasons. First is accuracy. The GHS population
data allocates administrative unit census population to the built cover data, smearing population
into commercial or industrial buildings and roads (impermeable surface), as well as residential
buildings. Smearing across areas of built cover is a crude procedure to determine where people
actually live. Accuracy is particularly poor if administrative units are large, as is typically the case
in Africa. Of the 12.9 million input population polygons worldwide in GPW, 10.5 million are in
the United States, so accuracy for the USA is much higher than in Africa. Equally compelling
for some African countries, census population numbers are outdated and of questionable accuracy.
While population numbers may be poorly and inconsistently measured across countries and time,
built cover is more consistently measured. Thus, we use built cover rather than trying to ascertain
where residential population lives.

In recording built cover, a 30x30 m pixel is built or not, and built area is simply the area covered
by the built 30x30m pixels. In working with 30x30m resolution data, for computational purposes
we aggregate to 210x210m size super-pixels, summing from 30x30 m built pixels to get the built
area of the super-pixel.

The key decision, given all the built pixels in a country, concerns what comprises a settlement.
Implicit is the idea that built pixels could be randomly located (rural) bits such as huts or hamlets
within a country, but some subset are agglomerations or clusters that define a settlement. Settlements
have high density values compared to a counterfactual: higher than the expected intensity of
clustering, beyond what one would find on a "dartboard" (Ellison and Glaeser, 1999).

To proceed, we follow de Bellefon et al. (2020). As described in Appendix A, we use a smoothed
surface to capture disconnected parts of built pixels within a settlement, so each super-pixel has a
smoothed density from the surrounding area and itself. Super-pixels further from the own-pixel
are discounted by distance up to a maximum of 2.3 km. Most super-pixels will have zero share
of built area for themselves and surrounding pixels, meaning that the pixel is deemed not built.
The normalized maximum is 1, in which case everything around the super-pixel and itself is built.
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Details are in the Appendix.

Next, we need a density cut-off or threshold to determine what is a significantly high degree of
density. For this we must pose a counterfactual. Based on a suggestion in de Bellefon et al.
(2020), we use a fixed large square area divided into pixels which we treat as a hypothetical country.
We randomly allocate built pixels across this area. The number of allocated built pixels and
counterfactual distribution varies by country, according to the share of actual built pixels within
each country’s total count in 2014. Then for each counterfactual built-up density, we calculate its
smoothed built-up density, as we did for the real spatial distribution. We bin the smoothed built-up
in 10000 bins (many bins being 0). We repeat this process 500 times and sum up the counts in each
bin to generate a stable distribution by leveraging the law of large numbers. The threshold we use
for each country is the 95 percentile in the counterfactual built-up distribution. These cut-offs for
each country are shown in Figure A2 in the Appendix. They range from a value close to 0 to about
0.006 for the smoothed share density threshold value. While that may seem small even at the upper
end, in the Appendix we show that it makes a huge difference to what are defined as the extents of
settlements.

Finally, we need to define settlement areas. For each country, we take all contiguous super-pixels
with smoothed density above its threshold and agglomerate them into a shell that defines the
boundaries of the settlement. For coastal settlements there is some infill for non-built super-pixels
on the coast surrounded by built surface. Then for this shell, the size of the settlement is the actual
built area within the shell, based on the sum of all 30x30 m built pixels within the shell. Figures
on numbers and size of settlements by country are given in Appendix Table A1.

Table 1 depicts the a summary of our 2014 data for Africa as a whole. Table A2 in the Appendix
shows the corresponding data for 1975. Table 1 divides the data into 10 bins of (almost) equal
share of total built area. Shares and total built area (in sq. km.) in each bin are given in columns
7 and 4 respectively. Because settlements are an integer count it is not possible, especially at the
upper end with large cities, to get exactly 10% in each bin. Size categories and the minimum and
maximum settlement sizes in the each bin are given in columns 1-3. The largest city in the sample
(1370 sq.km.) is about 52% of its bin total built area (2649 sq. km).

There are two sets of notable facts in the table. First, smaller settlements can be really small, just
one 30x30m grid square of built area (size: 0.0009 sq km). In the first bin the maximum size is just
0.25 sq km of built area. Those small settlements account for 94.5% of the total 111469 settlements
in the sample in 2014. Second, shell area, or the land area of settlements within their boundaries
as defined in the algorithm used to characterise settlements is enormous, compared to the area of
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actual built pixels. In the first bin, shell area is 171 times built area; while, in bin 10, shell area is
4.9 times larger than built area. These multiples tend to fall as we move to bins with larger sizes.
In the sections that follow we will look at all settlements, noting that some settlements that were
tiny in 1975 do grow at remarkable rates into medium size settlements in 2014, so should not be
ignored. However because we want to make sure statistical results are dominated by the volume
of tiny settlements, in robustness checks, we ran our basic results on larger settlements beyond a
minimal size defined below. Qualitatively, results are very similar to the full sample.

3 The Distribution of Settlements

We start by looking at the statistical (rather than geographical) distribution of the cross-section of
the 111469 settlements in 2014. Do these cities follow a Pareto distribution as in Gabaix (1999)
and approximate the rank size rule, or is the distribution more log normal as in Eeckhout (2004)?
Since we cover the entire size distribution not just the upper tail, as in Eeckhout we expect the
latter to be more likely. Indeed, in Figure A3a for 2014, a plot of rank versus size throughout the
distribution show a pattern that strongly deviates from the rank size rule. OLS estimates, although
they are biased, all show coefficients that deviate from the rank size coefficient of 1. All are well
under 1 for every country in the sample, with an estimate for a pooled sample with country fixed
effects of a very low -0.58. We repeated the exercise in A3a for the 47519 settlements in the 1975
cross-section, with a similar deviation from the rank size rule.

For a further perspective, we look at the size distribution of settlements in 1975 and in 2014 for the
1975 settlements which still exist in 2014. The Kolmogorov-Smirnov test for log-normality does
not reject overall log-normality for either year, noting, however, that the test is known to be weak.
In the Appendix, we show that the 2014 distribution in Figure A3b looks log normal with a few
bumps in the left tail, while the 1975 distribution has a jagged left tail. 1 As usual, Gabaix’s (1999)
Pareto shape in just the right tail of size distributions appears to hold.

For reference in Section 6, while we estimate our model for all settlements, The Appendix Figure
A3b for 1975 might suggest trying a cut-off on the left that excludes tiny settlements, where most
tiny settlements in 1975 never emerge as full-fledged significant size settlements above, say, an area
of built surface that is 0.011 sq km. We rerun our models in Section 6 using this cut-off in logs of
-4.5 for 1975 in robustness checks.

1In graphing the left tail, the main issue is that there are size gaps: we are moving in logs of settlements from 1
30x30 m grid square, rendered in logs of sq km, to 2 to 3 and so on grid squares, with huge concentrations at two grid
squares (about -6.3 in log points). The gaps produce the spikes and peaks in the very left tail.
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4 The Evolving Pattern of Settlement

We draw out some descriptive facts about the way in which the city system has evolved, building
on work, for example, in Harris Dobkins and Ioannides (2001), Black and Henderson (2003), and
Desmet and Rappaport (2017). We will focus on growth of the 47519 settlements that were present
in 1975. We look at the growth of settlements by size class. We show Gibrat’s law, underlying
Zipf’s law in Gabaix (1999), is violated. Then, we look at the past growth of settlements by their
final size, accounting for the birth and merger of built areas, hence showing how the evolution
from 47519 settlements in 1975 to 111469 in 2014 occurs. Finally we look at the growth in urban
shadows hypothesis reviewed and analyzed in Cuberes et al. (2021).

4.1 The Growth of 1975 Settlements

How did settlements of different initial sizes grow? Patterns are summarized in the "violin" Figure
1, based on 1975 share bins (Table A2) collapsed from 10 bins into 5 with a 20% share of built
each, to give bigger settlement counts to upper-level bins. The figure gives median growth rates
and the dispersion of growth rates of settlements in 1975 that survive to 2014. Recall that survive
means that they have not been absorbed by bigger nearby settlement as those settlements expanded,
and survivors may have absorbed nearby smaller settlements over time.

Figure 1 indicates slower growth of settlements that were initially large, relative to those in the
lower initial size bins. The median settlement amongst those that started in the lowest bin grows
by 170 % (= 100 exp(0.99)-1), while the median growth rate in the highest bin is 72 % (=100
exp(0.54)-1). The dispersion of growth rates as depicted by the violin graph in the lower end bin
is enormous. In this bin the fatter part of the violin is centred below the median and there is a long
handle of large growth rates where cities increase in size up to 3000-fold. Although cities in bin 1
are initially tiny, (all less than 1.35 sq km and 95% less than 0.22 sq km), some grow so fast that
by 2014 the biggest from this bin is over 18 sq km. As we move up the hierarchy in Figure 1, the
spread experiencing really high growth rates shrinks. Settlements in the upper 2 bins (the top 31
cities in 1975 accounting for 40% of 1975 built area) have growth rates much more concentrated
around the median.

These differential patterns of growth rates of 1975 settlements can be viewed through the lens
of Gibrat’s Law which says growth rates are independent of their initial sizes. The violin graph
suggests this is not the case. Appendix Table A3 and Figure A4 support that rejection. Table A3
shows results from estimation of a regression of 1975 to 2014 growth on 1975 size for the 37007
of 47519 1975 settlements which survive to 2014. The table shows specifications with and without
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country fixed effects, as well as with bin fixed effects. Results yield a highly significant negative
coefficient of about -0.09 in all cases. The corresponding Figure A4 shows how growth rates vary
by initial size. As with the violin figure, smaller settlements have comparatively higher growth
rates while larger ones grow more slowly.2

This result is very different than what the literature suggests for, say, American cities, where Gibrat’s
Law is often not rejected, as in Eeckhout (2004). We think this occurs because we are looking at
a sample and time frame in Africa of enormous expansion in numbers of urban areas and rapid
growth of all cities. This degree of motion and churning in the urban system are well beyond what
developed countries have experienced in at least the last half century. In the largely stagnant/stable
city systems in developed countries, after 1970 there is little entry of new cities and cross sections
in different years can look quite similar. Here that is not the case, as we explore further next.

4.2 Transitions

In this section we trace the transition of settlements from their position in the 1975 size classes to
their position in 2014 size classes (Table 1). We add to this births of settlements, since many 2014
settlements are not present in 1975, and also add exits since many 1975 settlements were absorbed
into bigger neighbours as those neighbours expanded.

Table 2 shows a transition matrix for 1975 settlements going to 2014, with a column for exits and
a row for births. Panel (a) shows counts, while Panel (b) shows shares. Rows are the 10 outcome
bins, or states for settlements in 1975, using 1975 bin cutoffs. Columns are 2014 states, based on
2014 bin cut-offs from Table 1. Thus, an element in row i and column i is the probability that a
settlement transitioned from 1975 state i to 2014 state j.

Reading the transition matrix, 69.9% of 1975 settlements in state 1 remain in state 1, while 7.3%
advance to state 2 in 2014 and 0.4% advance to state 3. The diagonal of 1975 state i to 2014 state
i is the probability that settlements remain in the same state and, as usual, dominates. But the
domination is quite limited. Some diagonal elements are well under 0.50. In higher states there is
enormous motion with both high upward and downward mobility. For example, starting in state
5, there is a 21.4% chance of moving up one state and a 8.9% chance of moving up two. Or from
state 8, there is a 33% chance of moving up a state and starting from state 9, there is a 20.0%
chance of moving up. There is also churning in relative sizes, whereby settlements move down
states, especially at the upper end. Starting from states 8, 9, and 10, there are respectively a 33.3%,
40.0% and a 44.4% chance of moving down a state. Unlike American data as in Harris Dobkins and

2The error bands are pretty tight up to a 1975 size of about about 7 sq km, but even at a size of 55 sq km or more
they are significantly less than growth rates for small settlements.
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Ioannides (2001) and Black and Henderson (2003) for example, there is huge downward mobility in
relative rankings as very fast growing settlements in thismassive urbanization period in sub-Saharan
Africa surge and displace other settlements that were in the upper ranks.

Births and exits add motion. The next to last column shows exits, which are settlements that merge
with, or are overrun by a bigger neighbour. There are a large number of exits from the first 4-5
states in 1975, with 22.3% of state 1 settlements being absorbed into other places. Even in states 4
and 5, 13.0% and 7.1% respectively of settlements from 1975 are absorbed. The bottom row shows
net births that occur between 1975 and 2014 (net births are births that survive: are not merged
into a bigger settlement). Births are almost always in state 1 in a given observed year (1990, 2000,
and 2014) and 99.4% of the 74462 net births remain in 2014 state 1. Of the 47519 settlements in
1975, 10512 exit and 37007 survive to 2014. These 37007 survivors plus the 74462 births make up
the 111469 settlements in 2014, noting the vast majority are births. Moreover, for the 2014 stock,
105366 are in state 1 and of those 70% are births since 1975. While in the 8 top states in 2014
there are no births, only settlements that were present in 1975.

4.3 Urban Shadows

Recent work has focused on the urban shadows hypothesis (e.g. Cuberes et al. (2021); Beltràn Tapia
et al. (2017); Bosker and Buringh (2017)), whereby being in the shadow of a giant city detracts
from growth. In Appendix B, we examine a version of this hypothesis. We find that, for settlements
in general, having more other settlement activity very nearby (0-50km) detracts from growth,
potentially a competition effect. Having more activity nearby but not immediate (50 - 150 km) on
the other hand offers market potential and improves growth performance as an average effect (as in
Jedwab and Storeygard, 2021 for Africa). However the extent to which activity is centered in bigger
settlements detracts from growth, consistent with the urban shadow hypothesis. What stopped us
from pursuing this line of inquiry was that these effects varied by place in the urban hierarchy.
The biggest cities benefit from more proximate 1975 activity (probably because they overrun and
absorb immediate towns), and they are indifferent or perhaps somewhat divorced from activities at
50 - 150 km. That led us to really try to grapple with the notion of urban hierarchies, both in theory
and in empirical implementation.
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5 The Geographical Pattern of Settlements: a Model of Urban
Hierarchy

We are interested in the spatial distribution of settlements, as well as the statistical distribution
of their size and growth. We observe geographical spacing and differential growth patterns of
settlements of different sizes. The remainder of the paper is devoted, using theory matched with
empirical work, to understanding these growth patterns. The central idea is that growth patterns
of settlements arise as a consequence of a pattern of competing and complementary interactions
between places. Competing, as places may supply similar outputs (goods that are close substitutes),
and compete for similar primary inputs. Complementary, as places may produce quite different
products which are supplied to households in nearby locations, and are also used by firms as
intermediate inputs. Demand from neighbours creates a demand or backwards linkage, and access
to supply of intermediate inputs constitute a cost or a forwards linkage.

We capture this in a model in which there are three different sectors which correspond broadly to
activities in developing countries, in which primary sectors of production employ a large part of the
labour force. Sector 3 is agriculture, using land and labour to produce goods that go both to final
consumption and further processing, but are costly to ship (bulky or prone to rapid deterioration).
Sector 2 is agro-processing, or more broadly activities that support the agricultural sector; it uses
sector 3 output as an input, and its output (such as processed food products) is less costly to ship.
Sector 1 is manufacturing and modern services, outputs that are also relatively easy to ship between
places.

A starting question is, where do these sectors locate? We suppose that there are many possible
locations, each ex ante identical (endowed with the same amount of land and level of technology)
and that labour is perfectly mobile between places and sectors. Starting from a position in which
all places are identical we show how a pattern of settlement emerges, with settlements becoming
of different types, i.e. specialising, at least partially, in different sectors. There is regularity in the
spacing of settlements of different types, with types having different sizes and spatial frequencies.
Along the path to this outcome settlements grow faster if they are near to settlements of different
types and remote from settlements of the same type.

5.1 Model Structure:

We set up the model for a general input-output structure and geographical space. Results come from
simulation and details of implementation and parameters are given in the following sub-section.
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There are N points (or places) in a geographical space, and these places are labelled with subscripts.
The distance between two places i, j is 38 9 , and this underpins the costs of shipping goods and
services around the space. Each place has a fixed endowment of land. There are three sectors of
production, as outlined above, indexed by superscripts s, r = 1, 2, 3. There is place and firm specific
product differentiation, represented by CES modelling of differentiation.

Sectoral demand: The price index for sector s products in place i is %B
8
,

%B8 = [
∑
9

=B9 (CB98?B9 ) (1−f
B)]1/(1−fB) , s = 1, 2, 3. (1)

This is the usual CES aggregator, with ?B
9
and =B

9
respectively the price and number of varieties

produced in place j, CB
98
the iceberg trade cost factor in shipping from j to i, and fB the elasticity of

substitution. All these variables and parameters are sector specific.

The value of demand for sector s output in place j is � B
9
, so total demand (across all locations) for

a sector s variety produced in place i is

GB8 = (?B8 )−f
B
∑
9

� B9 (%B9 ) (f
B−1) (CB8 9 ) (1−f

B) , s = 1, 2, 3. (2)

Production: Production uses primary factors (labour and, in sector 3, also land) and intermediates
with Cobb-Douglas technologies, so has unit cost functions (equal to price)

?B8 = (FB8 ) (1−0
1B−02B−03B) (%18 )0

1B (%28 )0
2B (%38 )0

3B
, s = 1, 2, 3. (3)

The exponents 0AB are the value share of sector r in production of sector s and FB
8
is the place i

sector s price of primary factors. This allows for all sectors to be used as input to all other sectors,
although we will set some of these input-output coefficients to zero in what follows. A key link is
032, the input of primary to agro-processing, sector 3 to sector 2.

Sectors 1 and 2 are monopolistically competitive, with an endogenously determined number of
firms each producing a distinct variety which breaks even when producing and selling one unit of
output, so 3

GB8 = (?B8 )−f
B
∑
9

� B9 (%B9 ) (f
B−1) (CB8 9 ) (1−f

B) = 1, B = 1, 2. (4)

Labour is the only primary factor used in these sectors, so equations (3) and (4) can be thought of
as defining a wage equation, i.e. giving the value of FB

8
at which firms break even, as a function of

3Equation (3) is average cost at unit scale of production.
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price indices, numbers of varieties, and expenditure levels throughout the economy.

Sector 3 is agriculture, and we give it a slightly different and simpler treatment. Each place is
endowed with the same quantity of land and uses land and labour with fixed coefficients to produce
a fixed quantity of a single place specific variety.4 In equations (3) and (4) this means that =3

8

= 1, and G3
8
takes fixed and uniform value G3. The level of sector 3 employment is therefore the

same everywhere, !3. However, since demand and the input prices vary across places, so too does
the market clearing price of each place’s agricultural variety, ?3

8
, and hence also F3

8
, the return

to primary factors, labour and land. This return could be divided between a wage and a rent
component but, since much African land is operated by family farms under traditional communal
land tenure, we leave it as a combined return to labour and land. We assume that the return is large
enough to retain !3 units of labour in each place.

Income and expenditure: Wage bills in each sector and place are the share of labour in the value of
output,

FB8 !
B
8 = (1 − 01B − 02B − 03B)=B8 ?B8 GB8 , B = 1, 2, 3, (5)

where, as noted above, in sector 3 this takes the form F3
8
!3 = (1−01B −02B −03B)?3

8
!3, with F3

8
!3,

interpreted as a combined return to land and labour. Summing across sectors, total income in each
place is given by

.8 = F
1
8 !
1
8 + F28 !28 + F38 !3. (6)

Expenditures in each place i on products of sector s come from final and derived demands and are

� B8 = `
B.8 +

∑
A=1,2,3

0BA=A8 ?
A
8 G
A
8 , B = 1, 2, 3, (7)

where consumer preferences are Cobb-Douglas, with sector shares `B. The consumer price index
in each place, %8, and per worker utility in each place-sector pair, DB8 , are therefore

%8 = (%18 )`
1 (%28 )`

2 (%38 )`
3
, DB8 = (FB8 )/%8 . (8)

The total labour force is fixed at L, of which #!3 workers are engaged in agriculture, and the
remaining ! − #!3 are perfectly mobile between sectors 1 and 2 and all places. It follows that all
places that have employment in either sector 1 or 2 have equal values for DB

8
, s = 1,2, with utility

less than or equal to this in places-sectors where there is no employment in these sectors.

Before moving to implementation of the model a few further comments are in order. First, all places

4This is ’Armington’ product differentiation, in contrast to the firm-specific differentiation of sectors 1 and 2.
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– including large settlements with manufacturing or agro-processing – also have agriculture, sector
3. This is partly for simplicity, but also supported by evidence on widespread agricultural output
produced in African urban areas (Henderson and Kriticos 2018). Second, land is not explicitly
modelled, except as an input to agriculture, where it is combined in fixed proportions with labour.
Neither rent, nor amenity or congestion enter consumer utility. This is for simplicity, although
it also reflects the difficulty of modelling African land tenure across the range of settlements we
study. Third, product differentiation and variety effects create agglomeration and spatial structure
in this model, exactly as in the basic core-periphery model (Krugman 1991, and its extension to
intermediate products in Fujita et al. 1999). The model is isomorphic to one in which the number
of varieties is fixed and replaced by technological agglomeration externalities.

5.2 Implementation

We use numerical simulation to track the evolution of the system of settlements, focusing on several
stylised cases. The simplest, and that which yields the greatest symmetry is to assume that places
are located on the circumference of a circle – the racetrack economy – with radius of unity and
distance between places measured around the circumference. For a richer picture we also show
results for places on a hexagonal lattice set on a (near) circular disk. This has the advantage of
being a two-dimensional space, but is complicated by having an edge (i.e. not being a featureless
natural geography). Transport costs are assumed to be exponential in distance, CB

8 9
= 4G?(−CB38 9 ).

For clarity, we present results only for the case in which just one of the input-output linkages
is switched on, that of agricultural supply to agro-processing, so 032 > 0. Agricultural products
from each place are assumed to be close substitutes (fB = 20) with high transport costs, such that
shipping just 6 degrees around the circumference of the circle loses 50 percent of output. Elasticities
of substitution and trade costs are lower in the other two sectors, and a full list of parameter values
is given in Appendix C.

Our main experiment is to start this model from an equilibrium in which all places are identical –
economic activity is uniformly distributed across space. This is an equilibrium which is stable if
trade costs are all very high, making each of the places autarkic. Spatial reorganisation is initiated
by (a) reducing trade costs to a point at which this equilibrium is unstable, and (b) perturbing
the equilibrium by a small random redistribution of the labour force, and having labour move in
response to utility differences between sectors and places, DB

8
.

The ensuing long-run equilibrium is illustrated in Figure 2. The top panel is the racetrack economy,
and has N = 600 places on the horizontal axis (the two ends connecting around the circle) and
employment in sectors 1 plus 2 is on the vertical. This is shown as employment relative to mean
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employment in settlements and measured in log units, so 0 is this mean value. Agricultural
employment takes place everywhere, at value !3, and is not shown on the figure. Sectors 1 and
2 both concentrate in a subset of places which we will refer to as type-1 and type-2 settlements,
noting that type-1 settlements contain sector 1 and sector 2 employment, while type-2 settlements
are exclusively sector 2. The reason for concentration is the usual home-market effect, as consumers
are attracted to places with a large supply of locally produced varieties, and firms are attracted to
the large market created by these consumers. Sector 1 operates in just four evenly spaced places
and these are relatively large, the spikes in the figure. Sector 2 operates in these places and in
the 24 places indicated by the smaller spikes. The relatively large number of these type-2 places
arises because sector 2 uses sector 3 output as an input to production, and sector 3 output is
produced everywhere and is particularly costly to transport. Since it operates in more places, type-
2 settlements are (ceteris paribus) significantly smaller than type-1 settlements. In short, there are
many ‘market towns’ (type-2 settlements) fairly evenly spread since they are supplied by dispersed
agriculture, and fewer but larger manufacturing cities.

Figure 2 was generated by a small random perturbation of employment which caused the system
to evolve away from a uniform distribution of activity. Different simulations with the same
parameters but different initial (small) perturbations all produce a very similar outcome for reasons
first expounded (in a different context) by Turing (1952) and applied to the spatial context by Fujita
et al. (1999). However, Figure 2 displays an extreme degree of regularity that does not hold
generally. Type-1 and type-2 settlements form at different frequencies, and the example in Figure
2 is constructed such that they mesh together in a regular way (24 type-2 divided by 4 type-1 is an
integer).

The bottom panel of Figure 2 is a similar equilibrium, constructed with the same parameters but
now with the geographical space being an entire disk, rather than just its circumference. The largest
settlements (containing type-1) are yellow shading to orange, smaller ones (type-2) light-blue, and
sector 3 (agriculture only) everywhere (dark-blue). A clear structure of settlements has emerged,
with a central large type-1 settlement, a further 8 such settlements further out with regular spacing
(and rational symmetry of order 4) and ’market towns’ (18 type-2 settlements) interspersed between
them.

Varying parameters used in the simulation changes the spatial equilibrium in complex ways, and
results are detailed in Appendix C. Looking first at transport costs, lower transport costs for
primary output (sector 3) leads to fewer and larger type-2 settlements as the benefits of locating
agro-processing very close to agriculture are reduced. Lower transport costs for sector 2, agro-
processing, have the opposite effects, increasing the number type-2 settlements as it tips the
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transport cost balance in favour of these settlements locating close to agriculture inputs rather than
consumers in type-1 settlements. Lower transport costs for sector 1 reinforces agglomeration and,
for 20 percent lower costs, reduces the number of type-1 settlements in the racetrack economy from
4 to 3. A 20 percent reduction in transport costs across the board has no effect on the number
of type-1 settlements and reduces the number of type-2, the driving force being the reduction in
the need for these settlements to be close to agriculture. Similar experiments can be conducted
with other parameters. Reducing fB in all sectors facilitates agglomeration, reducing the number
and increasing the size of settlements, as is usual in models of this type. The input-output linkage
between sectors 2 and 3 is important, and reducing this below a critical point causes sectors 1 and
2 to co-locate, so there are no distinct type-2 settlements.

An alternative comparative static experiment is to take an equilibrium such as those illustrated
in Figure 2, and perturb productivity or employment in a subset of places. For example, raising
productivity in a single type-2 settlement, holding employment in all other places constant, has the
effect of reducing utility in nearby type-2 settlements, and raising it in nearby type-1, the competing
and complementary effects we expect. Letting employment in other places change in response to
these utility differences creates waves or ripples of activity. Nearby type-2 places contract, their
contraction causing places further away to expand, and so on. Since there is no sunk capital in
the model, changes of this type may well cause settlements to move, i.e. some places empty out
completely, and new settlements form.

To link the model to the following empirical analysis we revert to our core simulations, in which
the pattern of settlement evolves away from an initial uniform distribution of activity. We now add
some noise to these simulations by giving places randomly and independently different productivity
levels in sectors 1 and 2 (i.e. shifts in the cost function, equation 3). Figure 3 (top panel) illustrates
an equilibrium with these place-sector productivity differentials. It is conceptually similar to the
bottom panel of Figure 2, but the rotational tidiness of Figure 2 is disturbed. Crucially, it retains a
pattern of few (8) well-spaced type-1 settlements interspersed with type-2 (of which there are 22).

What are the spatial relationships between different types of settlements in these equilibria? The
bottom part of Figure 3 (4 panels) uses repeated simulations to construct scatter plots of sector s
employment in each place as a function of proximity to employment in the same and other sectors,
r. We measure place i’s proximity to sector r employment in other places j as

∑
9≠8 \8 9!

A
9
where

\8 9 = 4G?(− 38 9 ). The scatter plot in the upper-left panel has employment in sector s = 1 (in
places where it is positive) on the vertical axis, and proximity to other places’ sector s = 1 activity
on the horizontal. The plots combine 5 separate runs of the model, each with different random
draws of productivity levels in each place, so the number of data points is the sum of all type-1
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settlements in the 5 runs, or 40 size and proximity pairs. The negative relationship illustrates the
competing relationships that we expect between settlements of the same type. The two scatter plots
on the right give the effect on employment in sector 2 of proximity to employment in each sector,
so the upper-right plot gives sector s = 2 employment on proximity to sector r = 1 employment, and
indicates a positive or complementary relationship. Competing and complementary interactions
show up with negative same-sector effect and positive cross-sector effect. Simple regressions of
the form !B

8
= UB + VBB

∑
9≠8 \8 9!

B
9
+ VAB

∑
9≠8 \8 9!

A
9
+ DB

8
, A, B = 1, 2, on numbers from this example

yield significant negative own effects, VBB, and significant positive cross effects, VAB, in each case,
indicating the competing same-type and complementary cross-type effect. The V’s are represented
by the slopes of what would be the best fit lines through the scatters in each panel in Figure 3.

The empirical work in the following section takes the African data to regressions of similar form
to that above. We look both at cross-sectional regressions and at growth regressions, i.e. asking
whether a settlement grows relative fast (slowly) if it is close to fast growing neighbours of different
(similar) type.

6 The Geographical Distribution of Settlements: Empirics

In this section we describe and report results from an empirical estimation of the model of Section
5. We work with three types of cities, which is the maximum differentiation we are comfortable
with empirically, and also follows the model. We first present the empirical specification and then
results.

6.1 Specification

For each country, divide settlements into 3 groups by the size of their built area. Group 1 are
settlements with the largest built areas; group 2 are middle size, group 3 are the smallest. We
discuss the criteria that define these groups below. For settlements in each group, we want to know
the effect of being close to other settlements of same type (i.e. in the same size group) and of
proximity to settlements in other size groups. Looking first at group 1, 11

8
, is the log of built area

for settlement i in this group, and 11
8
= 0 for settlements not in group 1. Effects depend on the

proximity of this settlement i to the built area of settlements in each of the groups, where \8 9 is a
measure of the proximity of settlement i to j, so

∑
9≠8 \8 91

�
9
captures the proximity to i weighted

sum of log built area in group G where G can take values from 1 to 3. Going across the 3 groups,
estimating equations are;

For i in group 1:
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118 = U1 + V11
∑
9≠8

\8 91
1
9 + V21

∑
9≠8

\8 91
2
9 + V31

∑
9≠8

\8 91
3
9 + 2>=CA>;B (9)

For i in group 2:

128 = U1 + V12
∑
9≠8

\8 91
1
9 + V22

∑
9≠8

\8 91
2
9 + V32

∑
9≠8

\8 91
3
9 + 2>=CA>;B (10)

For i in group 3:

138 = U1 + V13
∑
9≠8

\8 91
1
9 + V23

∑
9≠8

\8 91
2
9 + V33

∑
9≠8

\8 91
3
9 + 2>=CA>;B (11)

The coefficients of interest are the nine V coefficients. The estimated coefficients V�� capture the
effect of proximity to built area of type G on built area of type I, where �, � = 1, 2, 3. For the
impact of city j of type G on city i of type I, they are elasticities mediated by the \8 9 ’s.

From the model we expect V11, V22, and V33 < 0. This would be evidence of competition effects,
or that settlements of the same type are in a competing relationship with each other. We expect
V�� > 0 for � ≠ �, so that settlements of other types complement each other: a positive shock to
� generates greater demand for settlement � type products and thus enhanced size.

The exact proximity measures are \8 9 = exp(− 38 9 ), where 38 9 is Euclidean distance between
settlements in 100’s of km. The parameter K measures a rate at which the negative impact of
bilateral distance diminishes. We set K = 0.25. So at 100km, a neighbour’s level of activity is
discounted by 22% while at 200km, the discount is 39% and at 500 km it is 71%. We further
explore this parameter, increasing and decreasing  in robustness checks.

The system above is described for a single country. We estimate it separately for each country in
our African sample, yielding different U, V coefficients for each country, and assuming that spatial
interactions occur only within country, so \8 9 = 0 for i, j, settlements in different countries.

In implementation and estimation, the definition of groups is country-specific. For each country
we first rank all settlements by built-up in the initial period from largest to smallest, then obtain the
cumulative built-up. We define groups based on the cumulative share of built-up, using fractions
:1 and :2. For example, for the first group, :1 = 0.6 sets the largest settlement in the group to be
the cut-off settlement such that the accumulated share of built up is strictly equal or less than 0.6.
The second group includes the next ranked settlements up to that at which the cumulative share of
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built-up reaches :2. The last group includes the rest of the settlements. Given starting :1 and :2,
we run the regressions as shown in the equations 9 to 11. We then sum the residual sum of squares
[RSS] from each of the three equations to obtain the total RSS for the set of :1 and :2. To choose
the best :1 and :2, we iterate :1 from 0.6 to 0.9 with 0.05 as the interval and :2 from 0.65 to 0.95
with 0.05 as the interval. We choose the :1 and :2 that gives the minimum RSS. Appendix Figure
D1 illustrates what are the cut-offs which minimize the RSS in six cases given in Figure 6 analyzed
below.

In estimation we include controls for terrain ruggedness, distance to the nearest harbor, distance
to large lakes, distance to rivers, elevation, distance to the coast, the Ramankutty land suitability
index, temperature and precipitation as discussed in Henderson, et al. (2018). We also drop the
largest city in each country which is in all cases the de facto political capital as of 1990. This is
based on findings in Ades and Glaeser (1995) and Davis and Henderson (2003) that the size and
growth of these political capitals are less governed by market forces than by political forces. In
robustness checks we examine what happens if we add the capital back in. Finally, to be consistent
with growth specifications, the sample for each country is the 1975 settlements which survive to
2014.

Following themodel of section 5, we first estimated the levels system (9) - (11). That is, we estimated
a simple cross section of level built area of settlement 8, as a function of contemporaneous level∑
9≠8 \8 91

�
9
, for 2014 data, for 1975 settlements which survive to 2014. We present the results for

33 countries, dropping counties which have less than 200 settlements. Results are in Figure 4.
Figures are designed so each column corresponds to an equation for each type. So column 1 is for
type-1, the largest types of settlement as in Equation (9). Then each row reports on the type of
neighbour variable, so row 2 column 1, V21 is the effect of type-2 neighbour settlements on type-1
cities in Equation (10). Row 3 column 2, V32, is the effect of the smallest settlements, type-3,
on type-2 neighbouring settlements. And so on. Note that degrees of freedom for each of the 3
column estimating samples are given at the bottom of each figure. The implied sample sizes for
each of the 3 types are endogenous depending on the :1 and :2 which minimize the RSS. (If that
minimization point is not at a division where all equations have positive degrees of freedom, the
country is dropped, resulting in a loss of either 1 or 2 countries depending on the specification.)
Coefficients are given by the error bars about their estimated value.

In Figure 4 the diagonals report the own effects for each type of settlement. The theory suggests all
these should be negative, and that is generally what we find. For example, for type-1 settlements
in the top left panel, the own type neighbour effects are all negative, except for one insignificant
one. All insignificant coefficients are marked in red with an "X" added. In row 2 (middle panel)
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for type-2 settlements the own effects are significantly negative in 19 cases and insignificant in the
other cases. However, in row 3 (last panel) the own effects for the smallest settlements are all over
the place, with only 9 significantly negative. The first 2 diagonal elements support our priors: the
idea of substitutability, or competition effects.

Off diagonal elements give the cross-effects. We expect these all to be positive. For proximity
of type 2 to type 1, type 1 to type 2 and type 3 to type 2, in 50% of the cases, coefficients are
significantly positive. However in the rest taken together, proximity of type 3 to type 1, type 1
to type 3 and type 2 to type 3, about 1/3, 1/4, and 1/2 are negative, positive and insignificant
respectively. That is, there is no clear pattern. However, this cross-section specification is flawed,
so we do not go into further detail.

Why is the specification flawed? At the most basic level, settlements will have time invariant unob-
servables (beyond our observed controls), such as general socio-economic status of the settlement
which affect size and growth (Moretti, 2004), as well as other geographic and institutional factors.

To address this first problem, we run a growth specification of eqs (9) to (11), to remove the impact
of time persistent unobservables. For this growth on growth formulation, variables 11

8
in equations

(9) - (11) become log of built area in final period relative to initial period values, i.e. log of
proportionate change for each city. We leave in geographic controls which in principle are first
differenced out, because one might think of growth formulations in which they might affect growth
as well as levels.

In estimation we look at two different growth episodes: 1975-2014 and 2000-2014. Estimation
still of course has issues: results are still subject to missing variables that may be correlated
with contemporaneous parts of 11

8
. For example, while the model is simple without frictions,

settlements could be subject to time varying but persistent (correlated) productivity shocks which
enhance their growth rates. These shocks then spill over through trade and migration interactions
to their neighbours and hence are correlated with the neighbour based treatment effects. To try to
deal with this in the estimation for growth from 2000 to 2014, we insert variables for own 1975
and 1990 sizes, which helps control for these influences (Duranton et al., 2014). But the problem
of contemporaneous shocks affecting own growth and neighbours through regional shocks and
interactive feedback effects remains. The classic way (Arellano and Bond, 1991) to deal with this
is to instrument with lagged values, in this case 1975 and 1990 values of the neighbour-settlement
type variables. While these are strong instruments in our context, they do not solve the problem.
Even the weak tests for exogeneity of such instruments cited in most empirical work simply fail in
our context.
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Instead we accept that there is bias but focus on the direction of bias. As noted, the key issue
concerns local regional shocks which affect the own settlement and neighbouring settlements.
Then the bias direction is positive: the effects of a positive shock on the own settlement are also
experienced by neighbours, so the neighbour coefficient picks up part of the own settlement effect
of this shock and is biased upwards. For results for own-type settlements that are in competition
where we expect substitution effects, our negative estimates will be, in absolute terms, lower bounds
on the effect. However for complements in the hierarchy, the positive effects may truly exist but
they are biased and are an upper bound.

6.2 Results on Growth Formulations

Results for the 1975-2014 growth specification are shown in Figure 5 and the 2000-2014 growth
specification in Figure 6. For the latter besides the geographic variables, as noted, we also control
for own, predetermined sizes in 1975 and 1990. The 1975-2014 specification can’t include lagged
own values, but it gives a nice long difference. As we will see, patterns of the two sets of results
are similar.

In Figure 5 for growth from 1975 to 2014, considering the own type of neighbour effects in the
diagonal panels, for type-1 cities, all but 4 are significantly negative and the 4 are insignificant.
The V11’s are centred around about -0.75 or so. For the elasticity of city j of type 1 affecting the
own city i of type 1, the country specific V11 is mediated (or multiplied) by \8 9 , which for 400km
apart, for example, would be 0.37. For type-2 settlements (middle panel in row 2), all but 2 of
31 coefficients are significantly negative. Finally for type 3 settlements, in the last panel, all own
effects are significantly negative, except 4 which are insignificant. Overall, there is strong evidence
of competition effects and substitutability, especially given these are lower bound estimates on how
negative the effects can be.

For the off-diagonal and expected complementarity effects in Figure 5, we see evidence now of
positive effects. For type-1 settlements, in column 1 row 2, 17 coefficients are significantly positive
and only one significantly negative. In column 2 for the effects of type-1 and type-3 settlements on
type-2, 41 of 62 are significantly positive and only 2 are significantly negative. In column 3, for the
effect of type-2 settlements on type-3 we have 22 significant positives and no significant negative.
This is fairly strong evidence of complementary effects, albeit from biased coefficients. Where this
weakens is when types are "far apart": the effects of type-3 settlements on type-1 and vice versa.
There, of 62 cases in the bottom left and top right panels, only 22 are significantly positive, while 15
are significantly negative. This is as might be expected, as theory suggests the effect is a composite
rather than a direct effect, i.e., type-1 complementary with type-3 is intermediated through type-2
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rather than a direct linkage effect. Overall, the evidence suggests cross-type coefficients that are
positive and significant, except for the effects of type-1 on type-3 and vice versa.

Similar patterns hold for Figure 6 where we look at growth for 2000 to 2014. Here the patterns
are stronger and clearer, we think because the results are better founded econometrically. Here, we
have past sizes (in 1975 and 1990) as covariates as in Duranton and Turner (2014) to better control
for any influences of time invariant variables on settlement growth. It is for this set of regressions
that we conduct various robustness checks and show the full set of results.

In Figure 6, on the diagonal across all 3 panels, all but 3 of 96 coefficients are significantly
negative. This is even stronger evidence of substitutability effects from own types of neighbours.
On complementarity from non-own type neighbors, patterns are similar to Figure 5 but a stronger
and clearer pattern emerges. Types near each other complement each other. For the effects of
type-2 settlements on type-1, the effects of type-1 and type-3 settlements on type-2 and for the
effects of type-2 settlements on type-3, of the 128 cases, 99 have significant positive coefficients and
only 5 significant negative. However, for types-1 and -3 which more distant from each other in the
hierarchy, there is lack of clear evidence of complementarity. In the bottom left and top right panels,
as above, coefficients are pretty evenly split among being positive, negative and insignificant. In
Appendix E, Tables E1 to E32 we present the full regression results that correspond to Figure 6, so
as to see results on all controls and the numbers for the variables of greater interest.

6.3 Robustness Checks

We conduct 2 types of robustness check reported in Appendices. Additional to those we did
experiment with altering the spatial decay parameter  , trying values different than 0.25, given
there are no trade data between between our cities available to estimate the parameter. Changing
 has some quantitative impacts, but the pattern of results in Figure 6 is unaffected.

The first formal robustness check involves the fact that we dropped the capital city as of 1990 in
each country, where in 1990 that was always the primate city. Figure F1 adds back in the primate
city. Compared to Figure 6, the diagonal results of own type neighbours on oneself are again
virtually all significantly negative. Again, the vast majority of type-1 and -2 and then type-2 and -3
interactions are complementary, while evidence on type-1 and -3 interactions is much more mixed.
Qualitatively, results are unchanged relative to Figure 6.

Second, we examine what happens if drop very small 1975 settlements, those that are below
0.011 square km, or -4.5 in log scale in Appendix Figure A3b. From the full sample of 33338
1975 settlements which survive to 2014, this cut reduces the base sample to 16160 settlements.
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However, that cut leaves us only 22 countries in the estimating samples with settlement counts over
200. Figure F2 in the Appendix shows the results. Again on the diagonals for complementarity
effects, all coefficients but two are significantly negative. For the effects of type-1 settlements on
type-2 and vice versa, and for type-2 on type-3 and vice versa, 76% of coefficients are significantly
positive, presenting strong evidence of complementarity. As in other specifications presented
above, for the effect of type-1 settlements on type-3 and vice versa, results are mixed. Again,
qualitatively, results are the same as in Figure 6.

7 Conclusion

Sub-Saharan Africa experienced greater than doubling of its built area in the period 1975-2014,
this putting in place a hierarchy of settlements that is likely to shape future development for decades
– if not centuries – to come. This paper has describes this process and provides insights for some
of the factors shaping this emerging hierarchy. Growth has been far from uniform, particularly
for smaller settlements which had widely differing growth rates. On average, smaller settlements
grew faster than settlements that had achieved scale by 1975, this somewhat reducing the relative
position of larger settlements and in contrast to experience of higher income countries as captured
by Gibrat’s law.

We show that the relative growth performance of settlements is strongly dependent on their relation-
ship to neighbouring settlements. Settlements grow more slowly if they are close to fast growing
settlements of similar size, and faster if close to fast growing settlements that are either much
larger, or much smaller than they are. This growth process generates a somewhat regular pattern
of spacing of settlements of similar sizes. We rationalise this in terms of a theoretical model in
which settlements perform different functions – primary and agriculture, primary-processing, and
manufacturing and services. Patterns of complementarity and competition between these functions
generates the growth performance and emergent urban hierarchy that we see in the data.
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Tables
Table 1: The data in the 2014 cross-section

Size category Min size Max size Total built Shell area Count Share built
1 [0.0009,0.251] 0.0009 0.2511 2608 447165 105366 0.1000
2 (0.251,1.44] 0.2520 1.4445 2607 112957 4716 0.1000
3 (1.44,5.85] 1.4454 5.8536 2606 62547 954 0.0999
4 (5.85,18.2] 5.8554 18.1845 2595 41014 261 0.0995
5 (18.2,43.6] 18.3942 43.6311 2586 26117 91 0.0991
6 (43.6,95.5] 43.6869 95.4792 2645 34056 41 0.1014
7 (95.5,173] 96.8661 173.4880 2494 25710 20 0.0956
8 (173,313] 173.6270 313.4980 2486 17023 10 0.0953
9 (313,544] 347.6650 543.6480 2804 20616 7 0.1075
10 (544,1.37e+03] 634.6690 1370.4000 2649 12997 3 0.1016

Note: The table depicts the a summary of our 2014 data for Africa as a whole. It divides the data into 10 bins of
(almost) equal share of total built area. Shares and total built area (in sq. km.) in each bin are given in columns 7
and 4 respectively.
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Table 2: Transition matrix

Panel (a)
1 2 3 4 5 6 7 8 9 10 exit rowsum

1.0 31315 3276 188 6 0 0 0 0 0 0 10005 44790
2.0 5 1039 557 46 0 0 0 0 0 0 421 2068
3.0 0 0 197 141 16 4 0 0 0 0 66 424
4.0 0 0 0 61 39 5 2 0 0 0 16 123
5.0 0 0 0 4 31 12 5 0 0 0 4 56
6.0 0 0 0 0 5 18 2 2 0 0 0 27
7.0 0 0 0 0 0 2 7 4 1 0 0 14
8.0 0 0 0 0 0 0 4 2 3 0 0 9
9.0 0 0 0 0 0 0 0 2 2 1 0 5
10.0 0 0 0 0 0 0 0 0 1 2 0 3
birth 74046 401 12 3 0 0 0 0 0 0 0 0

Panel (b)
1 2 3 4 5 6 7 8 9 10 exit rowsum

1.0 0.699 0.073 0.004 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.223 1.000
2.0 0.002 0.502 0.269 0.022 0.000 0.000 0.000 0.000 0.000 0.000 0.204 1.000
3.0 0.000 0.000 0.465 0.333 0.038 0.009 0.000 0.000 0.000 0.000 0.156 1.000
4.0 0.000 0.000 0.000 0.496 0.317 0.041 0.016 0.000 0.000 0.000 0.130 1.000
5.0 0.000 0.000 0.000 0.071 0.554 0.214 0.089 0.000 0.000 0.000 0.071 1.000
6.0 0.000 0.000 0.000 0.000 0.185 0.667 0.074 0.074 0.000 0.000 0.000 1.000
7.0 0.000 0.000 0.000 0.000 0.000 0.143 0.500 0.286 0.071 0.000 0.000 1.000
8.0 0.000 0.000 0.000 0.000 0.000 0.000 0.444 0.222 0.333 0.000 0.000 1.000
9.0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.400 0.400 0.200 0.000 1.000
10.0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.333 0.667 0.000 1.000
birth 0.994 0.005 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Note: Table 2 shows a transition matrix for 1975 settlements going to 2014, with a column for exits and a row for
births. Panel (a) shows counts, while Panel (b) shows shares. There are 10 bins, or states. For columns, states are
based on 2014 bin cut-offs from Table 1. For rows, the first 10 rows in column 1 are states for cities in 1975, using
1975 bin cutoffs. State 1 is for 1975 cities in the bottom 1975 bin. State 2 is for 1975 cities in the second bin
based on 1975 cut-offs, and so on.
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Figures

Figure 1: Growth distribution by size

Note: The sample excludes settlements that exit (merged by other bigger neighbours by the end period.). Each bin
has about equal amount of built-up in year 1975. The numbers show the median growth rate.

26



Figure 2: Model simulation: employment

 Employment around a circle (600 locations) 

 

 Employment on a disk (hexagonal lattice, 1147 locations) 
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Figure 3: Employment and own- and cross-type effects
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Figure 4: Cross sectional results 2014. Effects by neighbours by type (OLS). No initial levels

Note: The figure shows the error bars of the OLS estimates by countries. The location of the error bars on the x-axis
is based on the ranking of the total built-up area, with larger countries shown to the right of the figure. The
positions of panels correspond to the positions of the coefficients in equations 9 to 11, with each equation being a
column and each row a city type. In searching for the optimal hierarchy of cities (bin split), we minimize the sum
of squared residuals (RSS). In the search, geographic controls are included.
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Figure 5: Growth 1975-2014. Effects by neighbours by type (OLS)

Note: The figure shows the error bars of the OLS estimates by countries. The location of the error bars on the x-axis
is based on the ranking of the total built-up area, with larger countries shown to the right of the figure. The
positions of panels correspond to the positions of the coefficients in equations 9 to 11, with each equation being a
column and each row a city type. In searching for the optimal hierarchy of cities (bin split), we minimize the sum
of squared residuals (RSS). In the search, geographic controls are included.
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Figure 6: Growth 2000-2014. Effects by neighbours by type (OLS). Controlling 1975 and 1990
initial built-up levels

Note: The figure shows the error bars of the OLS estimates by countries. The location of the error bars on the x-axis
is based on the ranking of the total built-up area, with larger countries shown to the right of the figure. The
positions of panels correspond to the positions of the coefficients in equations 9 to 11, with each equation being a
column and each row a city type. In searching for the optimal hierarchy of cities (bin split), we minimize the sum
of squared residuals (RSS). In the search, geographic controls are included.
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